博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
LinkedList的实现源码分析
阅读量:6035 次
发布时间:2019-06-20

本文共 3192 字,大约阅读时间需要 10 分钟。

LinkedList

以双向链表实现。链表无容量限制,但双向链表本身使用了更多空间,也需要额外的链表指针操作。
按下标访问元素--get(i)/set(i,e) 要悲剧的遍历链表将指针移动到位(如果i>数组大小的一半,会从末尾移起)。
插入、删除元素时修改前后节点的指针即可,但还是要遍历部分链表的指针才能移动到下标所指的位置,只有在链表两头的操作--add(), addFirst(),removeLast()或用iterator()上的remove()能省掉指针的移动。

在介绍LinkedList之前我们来回顾下链表的类型,链表主要包含单向链表,单向循环链表,双向链表,双向循环链表。具体的图我就不在这边画出了,不清楚的可以自行百度。LinkedList是属于双向链表,下图是包含头结点和尾节点的双向链表。

184011-20160412152626332-986071185.jpg

本篇内容主要讲解下LinkedList这个双向链表在java的源码的实现,主要包含有add,remove,get,set等方法的介绍。

首先我们来看下add方法的实现,下图演示了下节点插入的过程,包含了4个步骤。

184011-20160412152640941-501130159.jpg

我们来看下java的源码,从代码可知insert节点是查在链表尾部的

public boolean add(E e) {        linkLast(e);        return true;    } void linkLast(E e) {        final Node
l = last; final Node
newNode = new Node<>(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++; } private static class Node
{ E item; Node
next; Node
prev; Node(Node
prev, E element, Node
next) { this.item = element; this.next = next; this.prev = prev; } }

因为add(E e)是插在末尾,所以实际上我们只需要做两部操作,吧NewNode的prew指向最后一个节点,把最后一个几点的next指向newNode

void linkBefore(E e, Node
succ) { // assert succ != null; final Node
pred = succ.prev; final Node
newNode = new Node<>(pred, e, succ); succ.prev = newNode; if (pred == null) first = newNode; else pred.next = newNode; size++; modCount++; }

上面的insertBefore就是执行4个操作了:

1.把新节点newNode的prev指向succ.prev
2.把succ.prev的next执行newNode
3.newNode的next指向succ
4.succ的prev指向newNode

第3、4步已经在Node的构造函数做了,java是执行顺序是3、4、1、2

下面来看下删除的实现

184011-20160412152657926-1661468375.jpg

下面看下java的实现,具体下面代码逻辑很简单,就是获取要删除的节点x的prev节点为prev,x的下节点为next。

然后按如图执行prev.next=next;next.prev=prev;

E unlink(Node
x) { // assert x != null; final E element = x.item; final Node
next = x.next; final Node
prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element; }

set和get函数

public E set(int index, E element) {    checkElementIndex(index);    Node
x = node(index); E oldVal = x.item; x.item = element; return oldVal;} public E get(int index) { checkElementIndex(index); return node(index).item;}

这个两个函数都用到了node函数,又都要用到查询,所以首先要判断index是否大于index/2,大于的话就从尾节点开始查,反正从前节点查。

Node
node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) { Node
x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node
x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; }}

这样的设计可以提高查询效率,时间复杂度为O(n/2)。

参考

数据结构与算法分析_java语言描述(第2版).韦斯

转载于:https://www.cnblogs.com/huaizuo/p/5382884.html

你可能感兴趣的文章
C++中变量的持续性、链接性和作用域详解
查看>>
2017 4月5日上午
查看>>
Google Chrome开发者工具
查看>>
第一阶段冲刺报告(一)
查看>>
使用crontab调度任务
查看>>
【转载】SQL经验小记
查看>>
zookeeper集群搭建 docker+zk集群搭建
查看>>
Vue2.5笔记:Vue的实例与生命周期
查看>>
论JVM爆炸的几种姿势及自救方法
查看>>
联合体、结构体简析
查看>>
使用throw让服务器端与客户端进行数据交互[Java]
查看>>
java反射与代理
查看>>
深度分析Java的ClassLoader机制(源码级别)
查看>>
微服务架构选Java还是选Go - 多用户负载测试
查看>>
我的友情链接
查看>>
Javascript中的异步如何实现回调
查看>>
halcon算子介绍
查看>>
挖掘你不知道的windowsxp中的带宽潜能
查看>>
Software Engineering 招聘要求
查看>>
【转载】InstallAnyWhere自动化制作安装包的知识
查看>>